Combining boosting and evolutionary algorithms for learning of fuzzy classification rules

نویسنده

  • Frank Hoffmann
چکیده

This paper presents a novel boosting algorithm for genetic learning of fuzzy classification rules. The method is based on the iterative rule learning approach to fuzzy rule base system design. The fuzzy rule base is generated in an incremental fashion, in that the evolutionary algorithm optimizes one fuzzy classifier rule at a time. The boosting mechanism reduces the weight of those training instances that are classified correctly by the new rule. Therefore, the next rule generation cycle focuses on fuzzy rules that account for the currently uncovered or misclassified instances. The weight of a fuzzy rule reflects the relative strength the boosting algorithm assigns to the rule class when it aggregates the casted votes. The approach is compared with other classification algorithms for a number problem sets from the UCI repository.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

Boosting a Genetic Fuzzy Classifier

This paper presents a new boosting algorithm for genetic learning of fuzzy classification rules. The method is based on the iterative rule learning approach to fuzzy rule base system design. The fuzzy rule base is built in an incremental fashion, in that the evolutionary algorithm extracts one fuzzy classifier rule at a time. The boosting mechanism reduces the weight of those training instances...

متن کامل

Soft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors

Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...

متن کامل

Fraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms

The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2004